

Existing Wasena Bridge

- Built in 1939
- Two girder system

- Two column piers
- Hinge joints within the spans

Existing Substructure

Existing Superstructure

Alternatives to Address Deterioration

Repair

Rehabilitate

Replace

- 80 years of service
- Ten previous repair projects
- Further repairs
 less effective
- Less service life
- Less cost effective

Major Rehabilitation vs Replacement

Maintenance of Traffic

• Strategy: Build on new alignment

Maintenance of Traffic

Strategy: Build in two stages

- Long span lengths
- Crossing over Railroad
 Increased Cost

- Rehabilitation
 - Replace the superstructure
 - Deck
 - Beams
 - Reuse existing substructure
 - Repair deterioration
 - Modified to fit new superstructure
- Replacement
 - Replace entire bridge from foundations up.

Comparable features

Similar horizontal alignment

Similar vertical profile

Limited ROW impacts

Bridge width

Criteria	Superstructure Replacement	Complete Replacement
5. Superstructure Type	Match existing span configuration, due to reuse of existing piers and abutment.	New span arrangement will be more efficient, with longer spans and fewer piers.
6. Superstructure Joints	Joints required due to curved alignment and pier column strength.	New structure designed to minimize deck joints and reduce future maintenance.

Superstructure Replacement

- Two column piers
- Individual footings
- Web wall

- Demolish top portion
- Construct new cap

Criteria	Superstructure Replacement	Complete Replacement
8. Pier Reliability	2,000 square feet of pier surface repairs have been completed. Existing columns under-reinforced Retrofit with carbon fiber wrap	New pier columns designed to support all loads.
9. Foundations	Existing spread footings soft shale	New foundations on bedrock

Criteria	Superstructure Replacement	Complete Replacement
12. Construction Duration	Estimated to be 2 years	Estimated to be 2.5 years.
13. Impacts to Traffic	Road closure estimated to be 2 years.	Road closure estimated to be 1.5 years.
14. Construction Cost	\$16M	\$20M
15. Service Life	40 years	75 years.

